题目内容
先化简,再求值:÷(x+1+),其中x=2018.
如图,已知△ABC为直角三角形,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2等于____.
如图,在Rt△ABC中,AC=8cm,BC=6cm,P点在BC上,从B点到C点运动(不包括 C点),点 P运动的速度为1cm/s;Q点在AC上从C点运动到A点(不包括A点),速度为2cm/s,若点 P、Q 分别从B、C 同时运动,且运动时间记为t秒,请解答下面的问题,并写出探索的主要过程.
(1)当 t 为何值时,P、Q 两点的距离为 4cm?
(2)请用配方法说明,点P运动多少时间时,四边形BPQA的面积最小?最小面积是多少?
若关于x的一元二次方程有实数根,则k的取值范围是
A. 且 B.
C. 且 D.
如图,△ABC是等边三角形,D是三角形外一动点,满足∠ADB=60°,
(1)当D点在AC的垂直平分线上时,求证:DA+DC=DB;
(2)当D点不在AC的垂直平分线上时,(1)中的结论是否仍然成立?请说明理由;
(3)当D点在如图的位置时,直接写出DA,DC,DB的数量关系,不必证明.
如图所示,AB=AC,AD=AE,∠BAC=∠DAE,点D在线段BE上.若∠1=25°,∠2=30°,则∠3=______.
“五一”江北水城文化旅游节期间,几名同学包租一辆面包车前去旅游,面包车的租价为180元,出发时又增加了两名同学,结果每个同学比原来少摊了3元钱车费,设原来参加游览的同学共x人,则所列方程为( )
A. B.
C. D.
菱形ABCD的边长为6,∠ABC=60°,则较长对角线BD的长是_____.
已知:,且.
求.
若,求C所表示的多项式.