题目内容
【题目】已知抛物线y=x2+bx+c经过A(﹣1,0),B(3,0)两点,与y轴相交于点C,该抛物线的顶点为点D
(1)求该抛物线的解析式及点D的坐标。
(2)连接AC,CD,BD,BC,设△AOC,△BOC,△BCD的面积分别为S1 , S2和S3 , 用等式表示S1 , S2 , S3之间的数量关系,并说明理由
(3)假设存在,设点M的坐标为(m,0),表示出MA的长,根据MN∥BC,得到比例式求出AN,根据△AMN∽△ACM,得到比例式求出m,得到点M的坐标,求出BC的解析式,根据MN∥BC,设直线MN的解析式,求解即可
【答案】
(1)
解:∵抛物线y=x2+bx+c经过A(﹣1,0),B(3,0)两点,
∴,
解得.
∴抛物线的解析式为:y=x2﹣2x﹣3,
y=x2﹣2x﹣3=(x﹣1)2﹣4,
∴点D的坐标为:(1,﹣4)
(2)
解:S1+S3=S2,
过点D作DE⊥x轴于点E,DF⊥y轴于F,
由题意得,CD=,BD=,BC=,
CD2+BC2=BD2,
∴△BCD是直角三角形,
S1=×OA×OC=,
S2=×OB×OC=
S3=×CD×BC=3,
∴S1+S3=S2
(3)
解:存在点M使∠AMN=∠ACM,
设点M的坐标为(m,0),
∵﹣1<m<3,
∴MA=m+1,AC=,
∵MN∥BC,
∴=,即=,
解得,AN=(m+1),
∵∠AMN=∠ACM,∠MAN=∠CAM,
∴△AMN∽△ACM,
∴=,即(m+1)2=(m+1),
解得,m1=,m2=﹣1(舍去),
∴点M的坐标为(,0),
设BC的解析式为y=kx+b,把B(3,0),C(0,﹣3)代入得,
,解得,
则BC的解析式为y=x﹣3,又MN∥BC,
∴设直线MN的解析式为y=x+b,把点M的坐标为(,0)代入得,
b=﹣,
∴直线MN的解析式为y=x﹣.
【解析】(1)利用待定系数法求出抛物线的解析式,用配方法把一般式化为顶点式求出点D的坐标;
(2)根据点的坐标求出△AOC,△BOC的面积,利用勾股定理的逆定理判断△BCD为直角三角形,求出其面积,计算即可得到答案;
(3)假设存在,设点M的坐标为(m,0),表示出MA的长,根据MN∥BC,得到比例式求出AN,根据△AMN∽△ACM,得到比例式求出m,得到点M的坐标,求出BC的解析式,根据MN∥BC,设直线MN的解析式,求解即可.
【考点精析】解答此题的关键在于理解相似三角形的性质的相关知识,掌握对应角相等,对应边成比例的两个三角形叫做相似三角形.