题目内容

21、如图,点O是等边△ABC内一点,∠AOB=110°,∠BOC=a.以OC为一边作等边三角形OCD,连接AC、AD.
(1)当a=150°时,试判断△AOD的形状,并说明理由;
(2)探究:当a为多少度时,△AOD是等腰三角形?
分析:(1)首先根据已知条件可以证明△BOC≌△ADC,然后利用全等三角形的性质可以求出∠ADO的度数,由此即可判定△AOD的形状;
(2)利用(1)和已知条件及等腰三角形的性质即可求解.
解答:解:(1)∵△OCD是等边三角形,
∴OC=CD,
而△ABC是等边三角形,
∴BC=AC,
∠ACB=∠OCD=60°,
∴∠BCO=∠ACD,
∴△BOC≌△ADC,
∴∠BOC=∠AOD,
而∠BOC=a=150°,∠ODC=60°,
∴∠ADO=150°-60°=90°,
∴△ADO是直角三角形;

(2)①要使AO=AD,需∠AOD=∠ADO,
∴190°-α=α-60°,
∴α=125°;
②要使OA=OD,需∠OAD=∠ADO,
∴α-60°=50°,
∴α=110°;
③要使OD=AD,需∠OAD=∠AOD,
∴190°-α=50°,
∴α=140°.
所以当α为110°、125°、140°时,三角形AOD是等腰三角形.
点评:此题主要考查了等边三角形的性质与判定,以及等腰三角形的性质和旋转的性质等知识,根据旋转前后图形不变是解决问题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网