题目内容

【题目】如图,△ABC的内角∠ABC与外角∠ACD的平分线交于点E,且CE∥AB,AC与BE交于点E,则下列结论错误的是(  )

A.CB=CE
B.∠A=∠ECD
C.∠A=2∠E
D.AB=BF

【答案】D
【解析】解:∵△ABC的内角∠ABC与外角∠ACD的平分线交于点E,
∴∠ABF=∠CBF,∠FCE=∠ECD,
∵CE∥AB,
∴∠A=∠FCE,∠E=∠ABE,
∴∠A=∠ECD,∠FBC=∠E,
∴CB=CE,
∵∠ACD=∠A+∠ABC,CE平分∠ACD,
∴∠ECD=∠ACD=(∠A+∠ABC)(角平分线的定义),
∵BE平分∠ABC,
∴∠EBC=∠ABC(角平分线的定义),
∵∠ECD是△BCE的外角,
∴∠E=∠ECD﹣∠EBC=∠A,
即∠A=2∠E;
根据已知条件不能推出∠A=∠AFB,即不能推出AB=BF;
所以选项A、B、C的结论都正确,只有选项D的结论错误;
故选D.
【考点精析】通过灵活运用三角形的内角和外角,掌握三角形的三个内角中,只可能有一个内角是直角或钝角;直角三角形的两个锐角互余;三角形的一个外角等于和它不相邻的两个内角的和;三角形的一个外角大于任何一个和它不相邻的内角即可以解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网