题目内容
【题目】如图,AB是⊙O的直径,点C在⊙O上,点D在AB延长线上,且∠BCD=∠A.
(1)求证:DC是⊙O的切线;
(2)若∠A=30°,AC=2,求图中阴影部分的面积.
【答案】(1)证明见解析;(2)π﹣.
【解析】试题分析:(1)连结OC,如图,根据圆周角定理得∠ACB=90°,再利用等腰三角形的性质得∠A=∠OCA,∠OBC=∠OCB,则∠A+∠BCO=90°,加上∠BCD=∠A,所以∠BCD+∠BCO=90°,于是根据切线的判定方法可判断DC是⊙O的切线;
(2)根据含30度的直角三角形三边的关系,在Rt△ACB中计算出BC=AC=2,AB=2BC=4,再计算出∠AOC=120°,然后根据扇形面积公式,利用图中阴影部分的面积=S扇形AOC﹣S△AOC进行计算.
试题解析:(1)证明:连结OC,如图,
∵AB是⊙O的直径,
∴∠ACB=90°,
∵OA=OC,OB=OC,
∴∠A=∠OCA,∠OBC=∠OCB,
∴∠A+∠BCO=90°,
∵∠BCD=∠A,
∴∠BCD+∠BCO=90°,即∠OCD=90°,
∴OC⊥CD,
∴DC是⊙O的切线;
(2)在Rt△ACB中,∵∠A=30°,
∴BC=AC=2,
AB=2BC=4,
∵∠AOC=180°﹣∠A﹣∠ACO=120°,
∴图中阴影部分的面积=S扇形AOC﹣S△AOC
=S扇形AOC﹣S△ABC=.
练习册系列答案
相关题目