题目内容
【题目】如图,抛物线的顶点为C(1,﹣2),直线y=kx+m与抛物线交于A、B来两点,其中A点在x轴的正半轴上,且OA=3,B点在y轴上,点P为线段AB上的一个动点(点P与点A、B不重合),过点P且垂直于x轴的直线与这条抛物线交于点E.
(1)求直线AB的解析式.
(2)设点P的横坐标为x,求点E的坐标(用含x的代数式表示).
(3)求△ABE面积的最大值.
【答案】(1)直线AB解析式为y=x﹣;
(2)E点的坐标为(x, x2﹣x﹣);
(3)△ABE面积的最大值为.
【解析】试题分析:(1)由条件可先求得抛物线解析式,则可求得B点坐标,再利用待定系数法可求得直线AB解析式;
(2)由条件可知P、E的横坐标相同,又点E在抛物线上,则可表示出E点坐标;
(3)由(2)可用x表示出PE的长,则可用x表示出△ABE的面积,再利用二次函数的性质可求得其最大值.
试题解析:(1)∵抛物线顶点坐标为(1,﹣2),
∴可设抛物线解析式为y=a(x﹣1)2﹣2,
∵OA=3,且点A在x轴的正半轴上,
∴A(3,0),
∴0=a(3﹣1)2﹣2,解得a=,
∴抛物线解析式为y=(x﹣1)2﹣2=x2﹣x﹣,当x=0时可得y=﹣,
∴B(0,﹣),
设直线AB解析式为y=kx+b,把A、B坐标代入可得,解得,
∴y=x﹣;
(2)∵点P为线段AB上的一个动点,且PE⊥x轴,
∴点E的横坐标为x,
∵点E在抛物线上,
∴E点的坐标为(x, x2﹣x﹣);
(3)∵点P为线段AB上的一点,
∴P(x, x﹣),则E(x, x2﹣x﹣),
∴PE=x﹣﹣(x2﹣x﹣)=﹣x2+x,
由(2)可知点B到PE的距离x,点A以PE的距离为3﹣x,
∴S△ABE=PEx+PE(3﹣x)=PE(x+3﹣x)=PE=(﹣x2+x)=﹣x2+x=﹣(x﹣)2+,
∵﹣<0,
∴当x=时,S△ABE有最大值,最大值为,
∴△ABE面积的最大值为.