题目内容

如图,在直角坐标平面内的△ABC中,点A的坐标为(0,2),点C的坐标为(5,5),要使以A、B、C、D为顶点的四边形是平行四边形,且点D坐标在第一象限,那么点D的坐标是
(2,5)或(8,5)
(2,5)或(8,5)
分析:根据平行四边形的性质,可知CD∥AB,所以点D的纵坐标是5,再由AB间的距离即可推导出点D的纵坐标.
解答:解:由平行四边形的性质,可知D点的纵坐标一定是5;
又由A点相对于B点横坐标移动了3-0=3,故可得点D横坐标为5-3=2,即顶点D的坐标(2,5);
再由B点相对于A点横坐标移动了0+3=3,故可得点D横坐标为5+3=8,即顶点D的坐标(8,5).
故答案为:(2,5)或(8,5).
点评:本题主要考查了平行四边形的判定和坐标与图形的性质,同时又考查了数形结合思想,题目的条件既有数又有形,解决问题的方法也要既依托数也依托形,体现了数形的紧密结合.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网