题目内容
【题目】如图,抛物线y=ax2﹣2ax﹣4交x轴的正半轴于点A,交y轴于点B,且OA=OB.
(1)求该抛物线的解析式;
(2)若点M为AB的中点,且∠PMQ=45°,∠PMQ在AB的同侧,以点M为旋转中心将∠PMQ旋转,MP交y轴于点C,MQ交x轴于点D.设AD=m(m>0),BC=n,求n与m之间的函数关系式;
(3)在(2)的条件下,当∠PMQ的一边恰好经过该抛物线与x轴的另一个交点时,直接写出∠PMQ的另一边与x轴的交点坐标.
【答案】(1);(2);(3)或
【解析】试题分析:(1)由抛物线得B(0,-4),再结合OA=OB,且点A在x轴正半轴上,即可求得点A的坐标,从而求得结果;
(2)先根据等腰直角三角形的性质得到∠OAB=∠OBA=45°,AB=,即得∠ADM+∠AMD=135°,由∠CMD=45°可得∠AMD+∠BMC=135°,证得△ADM∽△BMC,根据相似三角形的性质可得,再根据M为AB的中点可得AM=BM=,即可求得所求的函数关系式;
(3)由即可求得抛物线与x轴另一个交点为,由点A、B的坐标可求得AB中点M的坐标,再分①当MP经过点(-2,0)时,②当MQ经过点(-2,0)时,这两种情况求解即可.
(1)由抛物线得B(0,-4),
∵OA=OB,且点A在x轴正半轴上,
∴A(4,0)
将A(4,0)代入得
,解得
∴抛物线的解析式为;
(2)∵OA=OB=4,∠AOB=90°,
∴∠OAB=∠OBA=45°,AB=,
∴∠ADM+∠AMD=135°
∵∠CMD=45°
∴∠AMD+∠BMC=135°,
∴∠ADM=∠BMC,
∴△ADM∽△BMC,
∴,则,
∵M为AB的中点,
∴AM=BM=,
∴就是所求的函数关系式;
(3)由
∴抛物线与x轴另一个交点为(-2,0),
∵A(4,0),B(0,-4),
∴AB中点M的坐标为(2,-2)
①当MP经过点(-2,0)时,MP的解析式为
∵MP交y轴于点C,
∴C(0,-1),则n=BC=OB-OC=3
由,得
∴OD=OA-AD=,则D(,0)
∵MQ经过M(2,-2)、D(,0),
∴MQ的解析式为;
②当MQ经过点(-2,0)时,MQ的解析式为
此时,点D的坐标为(-2,0),m=AD=6
∴,即BC=
∴OC=OB-BC=,则C(0,- )
∵MP经过M(2,-2)、C(0,- ),
∴MP的解析式为.
【题目】已知水银体温计的读数y(℃)与水银柱的长度x(cm)之间是一次函数关系,现有一支水银体温计,其部分刻度线不清晰(如图),表中记录的是该体温计部分清晰刻度线及其对应水银柱的长度.
水银柱的长度x(cm) | 4.0 | … | 8.0 | 9.6 |
体温计的度数y(℃) | 35.0 | … | 40.0 | 42.0 |
(1)求y关于x的函数关系式(不需要写出函数自变量x的取值范围);
(2)用该体温计测体温时,水银柱的长度为6.0cm,求此时体温计的读数.