题目内容
已知抛物线y=ax2+bx+c经过A(-1,0)、B(3,0)、C(0,3)三点,直线l是抛物线的对称轴.
(1)求抛物线的函数关系式;
(2)设点P是直线l上的一个动点,当△PAC的周长最小时,求点P的坐标;
(3)在直线l上是否存在点M,使△MAC为等腰三角形?若存在,直接写出所有符合条件的点M的坐标;若不存在,请说明理由.
![]()
解:(1)将A(-1,0)、B(3,0)、C(0,3)代入抛物线y=ax2+bx+c中,得:
,解得:![]()
∴抛物线的解析式:y=-x2+2x+3.
(2)连接BC,直线BC与直线l的交点为P;
设直线BC的解析式为y=kx+b,将B(3,0),C(0,3)代入上式,得:
,解得:![]()
∴直线BC的函数关系式y=-x+3;
当x-1时,y=2,即P的坐标(1,2).
(3)符合条件的M点,且坐标为 M(1,
)(1,-
)
(1,1)(1,0).
练习册系列答案
相关题目