题目内容
【题目】如图,在边长为a(a>2)的正方形各边上分别截取AE=BF=CG=DH=1,当∠AFQ=∠BGM=∠CHN=∠DEP=45°时,则正方形MNPQ的面积为 .
【答案】2
【解析】解:分别延长QE,MF,NG,PH,交FA,GB,HC,ED的延长线于点R,S,T,W,可得△RQF,△SMG,△TNH,△WPE是四个全等的等腰直角三角形(如图(2)).若将上述四个等腰三角形拼成一个新的正方形(无缝隙,不重叠),则新正方形的边长a;这个新正方形与原正方形ABCD的面积相等; 通过上述的分析,可以发现S正方形MNPQ=4S△FSB=4 ×1×1=2.
所以答案是2.
【考点精析】利用正方形的性质对题目进行判断即可得到答案,需要熟知正方形四个角都是直角,四条边都相等;正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角;正方形的一条对角线把正方形分成两个全等的等腰直角三角形;正方形的对角线与边的夹角是45o;正方形的两条对角线把这个正方形分成四个全等的等腰直角三角形.
练习册系列答案
相关题目
【题目】为了解某校八、九年级部分学生的睡眠情况,随机抽取了该校八、九年级部分学生进行调查,已知抽取的八年级与九年级的学生人数相同,利用抽样所得的数据绘制如图的统计图表:
睡眠情况分段情况如下
组别 | 睡眠时间x(小时) |
A | 4.5≤x<5.5 |
B | 5.5≤x<6.5 |
C | 6.5≤x<7.5 |
D | 7.5≤x<8.5 |
E | 8.5≤x<9.5 |
根据图表提供的信息,回答下列问题:
(Ⅰ)直接写出统计图中a的值
(Ⅱ)睡眠时间少于6.5小时为严重睡眠不足,则从该校八、九年级各随机抽一名学生,被抽到的这两位学生睡眠严重不足的可能性分别有多大?