题目内容
【题目】如图,在平面直角坐标系中,一次函数y=ax+b(a≠0)的图象与反比例函数(k≠0)的图象交于A、B两点,与x轴交于点C,过点A作AH⊥x轴于点H,点O是线段CH的中点,AC=,cos∠ACH=,点B的坐标为(4,n)
(1)求该反比例函数和一次函数的解析式;
(2)求△BCH的面积.
【答案】(1),y=﹣2x+4;(2)8.
【解析】
试题分析:(1)首先利用锐角三角函数关系得出HC的长,再利用勾股定理得出AH的长,即可得出A点坐标,进而求出反比例函数解析式,再求出B点坐标,即可得出一次函数解析式;
(2)利用B点坐标的纵坐标再利用HC的长即可得出△BCH的面积.
试题解析:(1)∵AH⊥x轴于点H,AC=,cos∠ACH=,∴,解得:HC=4,∵点O是线段CH的中点,∴HO=CO=2,∴AH==8,∴A(﹣2,8),∴反比例函数解析式为:,∴B(4,﹣4),∴设一次函数解析式为:y=kx+b,则:,解得:,∴一次函数解析式为:y=﹣2x+4;
(2)由(1)得:△BCH的面积为:×4×4=8.
练习册系列答案
相关题目