ÌâÄ¿ÄÚÈÝ
¡¾ÌâÄ¿¡¿ÒÑÖªÅ×Îïy=ax2+bx+c(b<0)ÓëÖáÖ»ÓÐÒ»¸ö¹«¹²µã.
(1)Èô¹«¹²µã×ø±êΪ(2£¬0)£¬Çóa¡¢cÂú×ãµÄ¹Øϵʽ£»
(2)ÉèAΪÅ×ÎïÏßÉϵÄÒ»¶¨µã£¬Ö±Ïßl£ºy=kx+1£kÓëÅ×ÎïÏß½»ÓÚµãB¡¢CÁ½µã£¬Ö±ÏßBD´¹Ö±ÓÚÖ±Ïßy=£1,´¹×ãΪµãD.µ±k£½0ʱ£¬Ö±ÏßlÓëÅ×ÎïÏßµÄÒ»¸ö½»µãÔÚyÖáÉÏ£¬ÇÒ¡÷ABCΪµÈÑüÖ±½ÇÈý½ÇÐÎ.
¢ÙÇóµãAµÄ×ø±êºÍÅ×ÎïÏߵĽâÎöʽ£»
¢ÚÖ¤Ã÷£º¶ÔÓÚÿ¸ö¸ø¶¨µÄʵÊýk£¬¶¼ÓÐA¡¢D¡¢CÈýµã¹²Ïß.
¡¾´ð°¸¡¿(1) y=a(x£2)2, c=4a;(2) ¢Ù¶¥µãA(1,0)£¬y= x2£2x+1,¢Ú¼û½âÎö.
¡¾½âÎö¡¿
£¨1£©¸ù¾ÝÅ×ÎïÏßÓëxÖáµÄ¹«¹²µã×ø±ê¼´Îªº¯Êý¶¥µã×ø±ê£¬¼´¿ÉÇó½â£»
£¨2£©¢Ùy£½kx£«1k£½k£¨x1£©£«1¹ý¶¨µã£¨1£¬1£©£¬ÇÒµ±k£½0ʱ£¬Ö±Ïßl±äΪy£½1ƽÐÐxÖᣬÓëÖáµÄ½»µãΪ£¨0£¬1£©£¬¼´¿ÉÇó½â£»¢Ú¼ÆËãÖ±ÏßAD±í´ïʽÖеÄkÖµ¡¢Ö±ÏßAC±í´ïʽÖеÄkÖµ£¬Á½¸ökÖµÏàµÈ¼´¿ÉÇó½â£®
½â£º£¨1£©Å×ÎïÏßÓëxÖáµÄ¹«¹²µã×ø±ê¼´Îªº¯Êý¶¥µã×ø±ê£¬¹Ê£ºy£½a£¨x2£©2£¬Ôòc£½4a£»
(2) y=kx+1£k= k(x£1)+1¹ý¶¨µã(1,1),
ÇÒµ±k£½0ʱ£¬Ö±Ïßl±äΪy=1ƽÐÐxÖá,ÓëyÖáµÄ½»µãΪ(0,1)
ÓÖ¡÷ABCΪµÈÑüÖ±½ÇÈý½ÇÐΣ¬¡àµãAΪÅ×ÎïÏߵĶ¥µã
¢Ùc=1£¬¶¥µãA(1,0)
Å×ÎïÏߵĽâÎöʽ: y= x2£2x+1.
¢Ú
x2£(2+k)x+k£½0,
x£½(2+k¡À
)
xD£½xB£½(2+k£
), yD=£1£»
ÔòD
yC£½(2+k2+k
,
C£¬A(1,0)
¡àÖ±ÏßAD±í´ïʽÖеÄkֵΪ£ºk AD==
£¬
Ö±ÏßAC±í´ïʽÖеÄkֵΪ£ºk AC=
¡àk AD= k AC, µãA¡¢C¡¢DÈýµã¹²Ïß.
