题目内容
【题目】如图,∠l=∠2,DE⊥BC,AB⊥BC,那么∠A=∠3吗?说明理由.
解:∠A=∠3,理由如下:
∵DE⊥BC,AB⊥BC(已知)
∴∠DEB=∠ABC=90° ( )
∴∠DEB+( )=180°
∴DE∥AB ( )
∴∠1=∠A( )
∠2=∠3( )
∵∠l=∠2(已知)
∴∠A=∠3( )
【答案】理由见解析.
【解析】分析:先根据垂直定义得到,则利用平行线的判定可得DE∥AB,然后根据平行线得性质得到∠2=∠3,∠1=∠A,再利用等量代换可得
详解:∵DE⊥BC,AB⊥BC(已知)
∴ (垂直的定义),
∴
∴DE∥AB(同旁内角互补相等,两直线平行),
∴∠1=∠A(两直线平行,同位角相等),
由DE∥BC还可得到:
∠2=∠3(两直线平行,内错角相等),
又∵∠1=∠2(已知)
∴∠A=∠3(等量代换).
故答案为:垂直的定义;∠ABC;同旁内角互补,两直线平行;两直线平行,同位角相等;两直线平行,内错角相等;等量代换.

练习册系列答案
相关题目
【题目】某校体育老师为了解该校八年级学生对球类运动项目的喜爱情况,进行了随机抽样调查(每位学生必须且只能选择一项最喜爱的运动项目),并将调查结果进行整理,绘制了如图不完整的统计图表.请根据图表中的信息解答下列问题:
类别 | 频数 |
A.乒乓球 | 16 |
B.足球 | 20 |
C.排球 | n |
D.篮球 | 15 |
E.羽毛球 | m |
(1)填空:m= , n=;
(2)若该年级有学生800人,请你估计这个年级最喜爱篮球的学生人数;
(3)在这次调查中随机抽中一名最喜爱足球的学生的概率是多少?