题目内容
计算:
-2
【解析】
试题分析:根据二次根式的化简,负指数次幂以及绝对值的意义进行计算即可.
试题解析:
原式=
考点:二次根式的化简;负指数次幂;绝对值的意义.
△ABC和△DEF中,AB=DE,∠B=∠E,补充条件后仍不一定能保证△ABC≌△DEF,则补充的这个条件为
A.BC=EF B.∠A=∠D
C.AC=DF D.∠C=∠F
已知:如图,在正方形ABCD中,点E是边AD的中点,联结BE,过点A作,分别交BE、CD于点H、F,联结BF.
(1)求证:BE=BF;
(2)联结BD,交AF于点O,联结OE.求证:
如果A、B分别是圆O1、圆O2上两个动点,当A、B两点之间距离最大时,那么这个最大距离被称为圆O1、圆O2的“远距”.已知,圆O1的半径为1,圆O2的半径为2,当两圆相交时,圆O1、圆O2的“远距”可能是
(A)3 (B)4 (C)5 (D)6.
如图,在直角坐标平面内,直线与轴和轴分别交于A、B两点,二次函数的图象经过点A、B,且顶点为C.
(1)求这个二次函数的解析式;
(2)求的值;
(3)若P是这个二次函数图象上位于轴下方的一点,且ABP的面积为10,求点P的坐标.
为了解某区初三学生的课余生活情况,调查小组在全区范围内随机抽取部分学生进行问卷调查. 问卷中请学生选择最喜欢的课余生活种类(每人只选一类),选项有音乐类、美术类、体育类及其他共四类,调查后将数据绘制成扇形统计图(如图所示). 如果该区有6000名初三学生,请你估计该区最喜欢体育运动的初三学生约有 名.
因式分【解析】= .
已知在△ABC中,=,=,M是边BC上的一点,BM:CM=1:2,用向量、表示=
如图,港口B位于港口O正西方向120海里处,小岛C位于港口O北偏西60°的方向.一艘科学考察船从港口O出发,沿北偏西30°的OA方向以20海里/小时的速度驶离港口O.同时一艘快艇从港口B出发,沿北偏东30°的方向以60海里/小时的速度驶向小岛C,在小岛C用1小时装补给物资后,立即按原来的速度给考察船送去.
(1)快艇从港口B到小岛C需要多少时间?
(2)快艇从小岛C出发后最少需要多少时间才能和考察船相遇?