题目内容

【题目】某出租汽车公司计划购买A型和B型两种节能汽车,若购买A型汽车4辆,B型汽车7辆,共需310万元;若购买A型汽车10辆,B型汽车15辆,共需700万元.

1A型和B型汽车每辆的价格分别是多少万元?

2)该公司计划购买A型和B型两种汽车共10辆,费用不超过285万元,且A型汽车的数量少于B型汽车的数量,请你给出费用最省的方案,并求出该方案所需费用.

【答案】1A型汽车每辆的进价为25万元,B型汽车每辆的进价为30万元;(2)最省的方案是购买A型汽车4辆,购进B型汽车6辆,该方案所需费用为280万元.

【解析】

1)设A型汽车每辆的进价为x万元,B型汽车每辆的进价为y万元,根据购买A型汽车4辆,B型汽车7辆,共需310万元;若购买A型汽车10辆,B型汽车15辆,共需700万元,即可得出关于xy的二元一次方程组,解之即可得出结论;

2)根据题意列出不等式组解答即可.

1)设A型汽车每辆的进价为x万元,B型汽车每辆的进价为y万元,

依题意,得:

解得

答:A型汽车每辆的进价为25万元,B型汽车每辆的进价为30万元;

2)设购进A型汽车m辆,购进B型汽车(10m)辆,根据题意得:

解得:3≤m5

m是整数,

m34

m3时,该方案所用费用为:25×3+30×7285(万元);

m4时,该方案所用费用为:25×4+30×6280(万元).

答:最省的方案是购买A型汽车4辆,购进B型汽车6辆,该方案所需费用为280万元.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网