题目内容

如图,等边三角形ABC,点E是AB上一点,点D在CB的延长线上,且ED=EC,
EF∥AC交BC于点F.
(1)试说明四边形AEFC是等腰梯形;
(2)请判断AE与DB的数量关系,并说明你的理由.
(1)四边形AEFC是等腰梯形 (3′)
(2) AE=DB (8′)
本题考查了等腰梯形的判定,全等三角形的性质和判定,等边三角形的性质的应用. (1)根据平行得出梯形AEFC,根据等边三角形性质得出∠A=∠ACB,根据等腰梯形的判定推出即可;(2)求出AE=CF,推出∠EFB=∠ACB=∠ABC,推出∠D=∠ECD,根据AAS证出△EFD≌△EBC,得出DF=BC,推出BD=CF即可.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网