题目内容
如图,AD是△ABC的中线,CE是△ACD的中线,DF是△CDE的中线,如果△DEF的面积是2,那么△ABC的面积为( )
分析:根据三角形的中线把三角形分成面积相等的两个三角形依次求解即可.
解答:解:∵DF是△CDE的中线,
∴S△CDE=2S△DEF,
∵CE是△ACD的中线,
∴S△ACD=2S△CDE=4S△DEF,
∵AD是△ABC的中线,
∴S△ABC=2S△ACD=8S△DEF,
∵△DEF的面积是2,
∴S△ABC=2×8=16.
故选C.
∴S△CDE=2S△DEF,
∵CE是△ACD的中线,
∴S△ACD=2S△CDE=4S△DEF,
∵AD是△ABC的中线,
∴S△ABC=2S△ACD=8S△DEF,
∵△DEF的面积是2,
∴S△ABC=2×8=16.
故选C.
点评:本题考查了三角形的面积,熟记三角形的中线把三角形分成面积相等的两个三角形是解题的关键.
练习册系列答案
相关题目