题目内容

【题目】已知,如图,双曲线y= (x>0)与直线EF交于点A,点B,且AE=AB=BF,连结AO,BO,它们分别与双曲线y= (x>0)交于点C,点D,则:

(1)①AB与CD的位置关系是
②四边形ABDC的面积为

【答案】
(1)AB∥CD;
【解析】解:①如图,过点A作AM⊥x轴于点M,过点D作DH⊥x轴于点H,过点B作BN⊥x轴于点N,

∴AM∥DH∥BN∥y轴,
设点A的坐标为:(m, ),
∵AE=AB=BF,
∴OM=MN=NF,
∴点B的坐标为:(2m, ),
∴SOAB=SOAM+S梯形AMNB﹣SOBN=2+ ×( + )×(2m﹣m)﹣2=3,
∵DH∥BN,
∴△ODH∽△OBN,

∵DHOH=2,BNON=4,
∴( 2= =
同理:( 2=
=
∴AB∥CD
所以答案是:AB∥CD
②∵ = ,∠COD=∠AOB,
∴△COD∽△AOB,
=( 2=
∴SCOD=
∴S四边形ABDC=
所以答案是:

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网