题目内容

【题目】已知一元二次方程的一根为

关于的函数关系式;

求证:抛物线轴有两个交点;

设抛物线轴交于两点(不重合),且以为直径的圆正好经过该抛物线的顶点,求的值.

【答案】(1);(2)证明见解析;(3)

【解析】

(1)把x=2直接代入一元二次方程x2+px+q+1=0中即可得到q关于p的函数关系式;
(2)利用(1)的结论证明抛物线y=x2+px+q的判别式是正数就可以了;
(3)首先求出方程x2+px+q+1=0的两根,然后用p表示AB的长度,表示抛物线顶点坐标,再利用以AB为直径的圆正好经过该抛物线的顶点可以得到关于p的方程,解方程即可求出p.

解:由题意得,即

证明:∵一元二次方程的判别式

∴一元二次方程有两个不相等的实根,

∴抛物线轴有两个交点;

解:由题意,

解此方程得

的顶点坐标是

为直径的圆经过顶点,

解得

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网