题目内容
【题目】如图是用长度相等的小棒按一定规律摆成的一组图案.
(1)第1个图案中有6根小棒;第2个图案中有 根小棒;第3个图案中有 根小棒;
(2)第n个图案中有多少根小棒?
(3)第25个图案中有多少根小棒?
(4)是否存在某个符合上述规律的图案,由2032根小棒摆成?如果有,指出是滴几个图案;如果没有,请说明理由.
【答案】(1)11 , 16 (2) (3)126 (4)不存在, 理由:令,得出n=406.2,不是整数,故不存在符合上述规律的图案,由2032根小棒摆成.
【解析】
(1)(2)由图可知:第1个图案中有5+1=6根小棒,第2个图案中有2×5+2-1=11根小棒,第3个图案中有3×5+3-2=16根小棒,…由此得出第n个图案中有5n+n-(n-1)=5n+1根小棒;
(3)把数据代入(2)中的规律求得答案即可;
(4)利用(2)中的规律建立方程求得答案即可.
(1)第2个图案中有11根小棒;第3个图案中有16根小棒;
(2)由图可知:第1个图案中有5+1=6根小棒,第2个图案中有2×5+2-1=11根小棒,第3个图案中有3×5+3-2=16根小棒,…,因此第n个图案中有5n+n-(n-1)=5n+1根;
(3)令n=25,得出,故第25个图案中有126根小棒;
(4)令,得出n=406.2,不是整数,故不存在符合上述规律的图案,由2032根小棒摆成.
【题目】某网络约车公司近期推出了“520专享”服务计划,即要求公司员工做到“5星级服务、2分钟响应、0客户投诉”,为进一步提升服务品质,公司监管部门决定了解“单次营运里程”的分布情况.老王收集了本公司的5000个“单次营运里程”数据,这些里程数据均不超过25(千米),他从中随机抽取了200个数据作为一个样本,整理、统计结果如下表,并绘制了不完整的频数分布直方图.
组别 | 单次营运里程“x”(千米) | 频数 |
第一组 | 0<x≤5 | 72 |
第二组 | 5<x≤10 | a |
第三组 | 10<x≤15 | 26 |
第四组 | 15<x≤20 | 24 |
第五组 | 20<x≤25 | 30 |
根据以上信息,解答下列问题:
(1)表中a= ,样本中“单次营运里程”不超过15千米的频率为 ;
(2)请把频数分布直方图补充完整;
(3)估计该公司5000个“单次营运里程”超过20千米的次数.(写出解答过程)