题目内容
【题目】某服装店的一次性购进甲、乙两种童衣共100件进行销售,其中甲种童衣的进价为80元/件,售价为120元/件;乙种童衣的进价为100元/件,售价为150元/件。设购进甲种童衣的数量为(件),销售完这批童衣的总利润为(元)。
(1)请求出与之间的函数关系式(不用写出的取值范围);
(2)如果购进的甲种童衣的件数不少于乙种童衣件数的3倍,求购进甲种童衣多少件式,这批童衣销售完利润最多?最多可以获利多少元?
【答案】(1);(2)75件,4250元.
【解析】
(1)总利润=甲种童衣每件的利润×甲种童衣的数量+乙种童衣每件的利润×乙种童衣的数量,根据等量关系列出函数解析式即可;
(2)根据题意,先得出x的取值范围,再根据函数的增减性进行分析即可.
解:(1)∵甲种童衣的数量为件,,是乙种童衣数量为件;
依题意得:甲种童衣每件利润为:元;乙种童衣每件利润为:元
∴,
∴;
(2),
,
∵中,,
∴随的增大而减小,
∵,
∴时,
答:购进甲种童衣为75件时,这批童衣销售完获利最多为4250元。
【题目】某校有3000名学生.为了解全校学生的上学方式,该校数学兴趣小组以问卷调查的形式,随机调查了该校部分学生的主要上学方式(参与问卷调查的学生只能从以下六个种类中选择一类),并将调查结果绘制成如下不完整的统计图.
种类 | A | B | C | D | E | F |
上学方式 | 电动车 | 私家车 | 公共交通 | 自行车 | 步行 | 其他 |
某校部分学生主要上学方式扇形统计图某校部分学生主要上学方式条形统计图
根据以上信息,回答下列问题:
(1)参与本次问卷调查的学生共有____人,其中选择B类的人数有____人.
(2)在扇形统计图中,求E类对应的扇形圆心角α的度数,并补全条形统计图.
(3)若将A、C、D、E这四类上学方式视为“绿色出行”,请估计该校每天“绿色出行”的学生人数.