题目内容
【题目】如图,AB是⊙O的直径,点C、D在⊙O上,∠A=2∠BCD,点E在AB的延长线上,∠AED=∠ABC
(1)求证:DE与⊙O相切;
(2)若BF=2,DF=,求⊙O的半径.
【答案】(1)详见解析;(2)5.
【解析】试题分析:(1)连接OD,由AB是⊙O的直径可得∠ACB=90°,所以∠A+∠ABC=90°,即可证得∠BOD=∠A,从而推出∠ODE=90°,即可得到结论;(2)连接BD,过D作DH⊥BF于H,由弦切角定理得到∠BDE=∠BCD,推出△ACF与△FDB都是等腰三角形,根据等腰直角三角形的性质得到FH=BH=BF=1,则FH=1,根据勾股定理得到HD=3,然后根据勾股定理列方程即可得到结论.
试题解析:(1)证明:连接OD,
∵AB是⊙O的直径,
∴∠ACB=90°,
∴∠A+∠ABC=90°,
∵∠BOD=2∠BCD,∠A=2∠BCD,
∴∠BOD=∠A,
∵∠AED=∠ABC,
∴∠BOD+∠AED=90°,
∴∠ODE=90°,
即OD⊥DE,
∴DE与⊙O相切;
(2)解:连接BD,过D作DH⊥BF于H,
∵DE与⊙O相切,
∴∠BDE=∠BCD,
∵∠AED=∠ABC,
∴∠AFC=∠DBF,
∵∠AFC=∠DFB,
∴△ACF与△FDB都是等腰三角形,
∴FH=BH=BF=1,则FH=1,由勾股定理可得HD==3,
在Rt△ODH中,OH2+DH2=OD2,
即(OD﹣1)2+32=OD2,
∴OD=5,
∴⊙O的半径是5.
练习册系列答案
相关题目