题目内容
【题目】如图,在扇形中,,是的中点,是的中点,点在上,点在上,四边形是矩形,连接.若,则阴影部分的面积为____________.(结果保留)
【答案】
【解析】
连接OD、OE,作DH⊥OA于H,根据D是的中点可得∠AOD=∠BOD=45°,继而可得△HDO为等腰直角三角形,求出DH,即可求得△COD的面积和扇形BOD的面积,最后根据S阴影=S△COD+S扇形DOB-S矩形OCEF即可求出阴影部分的面积.
如图,连接OD,作DH⊥OA于H,
∵D是的中点,
∴∠AOD=∠BOD,
∵∠AOB=90°,
∴∠AOD=∠BOD=45°,
∴,
∵点C为OA的中点,
∴,
∴,
∴,S扇形BOD=,S矩形OCEF=OCCE=,
∴S阴影=S△COD+S扇形DOB-S矩形OCEF=,
故答案为:.
练习册系列答案
相关题目