题目内容
【题目】在梯形ABCD中, AD∥BC,AD=3,BC=7, ∠B+∠C=90°,点E、F分别是边AD、BC的中点,那么线段EF=_____.
【答案】2
【解析】
首先过点E作EM∥AB,EN∥CD,又由AD∥BC,即可得四边形ABME,ENCD是平行四边形,易得MN的值与MF=NF,△MNF是直角三角形,然后根据直角三角形中,斜边上的中线的长等于斜边的一半,即可求得EF的长.
过点E作EM∥AB,EN∥CD,
∵AD∥BC,
∴四边形ABME,ENCD是平行四边形,
∴BM=AE,CN=ED,EM∥AB,EN∥CD,
∴∠EMN=∠B,∠ENB=∠C,
∵∠B+∠C=90°,
∴∠EMN+∠ENM=90°,
∴∠MEN=90°,
∵点E、F分别是边AD、BC的中点,
∴AE=ED=AD=,BF=CF=BC=,
∴MF=NF,MN=BC-AD=4,
∴EF=MN=×4=2.
故答案是:2.
练习册系列答案
相关题目
【题目】如图,在△ABC中,∠ACB=90°,∠A=30°,AB=6cm,点D是线段AB上一动点,将线段CD绕点C逆时针旋转50°至CD′,连接BD′.设AD为xcm,BD′为ycm.
小夏根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.
下面是小夏的探究过程,请补充完整.
(1)通过取点、画图、测量,得到了与的几组值,如下表:
1 | 2 | 3 | 3.5 | 4 | 5 | 6 | ||
3.5 | 1.5 | 0.5 | 0.2 | 0.6 | 1.5 | 2.5 |
(说明:补全表格时相关数值保留一位小数)
(2)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;
(3)结合画出的函数图象,解决问题:当BD=BD'时,线段AD的长度约为_________.