题目内容
【题目】如图,直线AB与CD相交于点O,∠AOE=90°.
(1)如图1,若OC平分∠AOE,求∠AOD的度数;
(2)如图2,若∠BOC=4∠FOB,且OE平分∠FOC,求∠EOF的度数.
【答案】(1)135°;(2)54°
【解析】
(1)利用OC平分∠AOE,可得∠AOC=∠AOE=×90°=45°,再利用∠AOC+∠AOD=180°,即可得出.
(2)由∠BOC=4∠FOB,设∠FOB=x°,∠BOC=4x°,可得∠COF=∠COB-∠BOF=3x°,根据OE平分∠COF,可得∠COE=∠EOF=∠COF=x°,即可得出.
(1)∵∠AOE=90°,OC平分∠AOE,
∴∠AOC=∠AOE=×90°=45°,
∵∠AOC+∠AOD=180°,
∴∠AOD=180°-∠AOC=180°-45°=135°,
即∠AOD的度数为135°.
(2)∵∠BOC=4∠FOB,
∴设∠FOB=x°,∠BOC=4x°
∴∠COF=∠COB-∠BOF
=4x°-x°=3x°
∵OE平分∠COF
∴∠COE=∠EOF=∠COF=x°
∵x+x=90°
∴x=36,
∴∠EOF=x°=×36°=54°
即∠EOF的度数为54°.
练习册系列答案
相关题目