题目内容
【题目】如图,在△ABC中,AB=6cm,AC=8cm,BC=10cm,M是BC边上的动点,MD⊥AB,ME⊥AC,垂足分别是D、E,线段DE的最小值是 cm.
【答案】4.8
【解析】
试题分析:根据勾股定理的逆定理求出∠A=90°,根据矩形的判定得出四边形ADME是矩形,根据矩形的性质得出DE=AM,求出AM的最小值即可.
解:∵在△ABC中,AB=6cm,AC=8cm,BC=10cm,
∴BC2=AB2+AC2,
∴∠A=90°,
∵MD⊥AB,ME⊥AC,
∴∠A=∠ADM=∠AEM=90°,
∴四边形ADME是矩形,
∴DE=AM,
当AM⊥BC时,AM的长最短,
根据三角形的面积公式得:AB×AC=BC×AM,
∴6×8=10AM,
AM=4.8(cm),
即DE的最小值是4.8cm.
故答案为:4.8.
练习册系列答案
相关题目