题目内容

【题目】已知abc为△ABC三边,且满足a2+b2+c2+338=10a+24b+26c.试判断△ABC的形状.

【答案】直角三角形

【解析】

试题分析:把已知条件写成三个完全平方式的和的形式,再由非负数的性质求得三边,根据勾股定理的逆定理即可判断ABC的形状.

由已知得(a210a+25)+(b2-24b+144)+(c226c+169)=0

(a-5)2+(b-12)2+(c-13)2=0

由于(a-5)2≥0,(b-12)2≥0,(c-13)2≥0.

所以a-5=0,得a=5;

b-12=0,得b=12;

c-13=0,得c=13.

又因为132=52+122,即a2+b2=c2

所以△ABC是直角三角形.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网