题目内容
【题目】(本小题满分12分)如图,在平面直角坐标系xOy中,抛物线()与x轴交于A,B两点(点A在点B的左侧),经过点A的直线l:与y轴负半轴交于点C,与抛物线的另一个交点为D,且CD=4AC.
(1)直接写出点A的坐标,并求直线l的函数表达式(其中k,b用含a的式子表示);
(2)点E是直线l上方的抛物线上的动点,若△ACE的面积的最大值为,求a的值;
(3)设P是抛物线的对称轴上的一点,点Q在抛物线上,以点A,D,P,Q为顶点的四边形能否成为矩形?若能,求出点P的坐标;若不能,请说明理由.
【答案】(1)A(-1,0),;(2);(3)P的坐标为(1,)或(1,-4).
【解析】
试题(1)在中,令y=0,得到,,得到A(-1,0),B(3,0),由直线l经过点A,得到,故,令,即,由于CD=4AC,故点D的横坐标为4,即有,得到,从而得出直线l的函数表达式;
(2)过点E作EF∥y轴,交直线l于点F,设E(,),则F(,),
EF==,S△ACE=S△AFE-S△CFE==,故△ACE的面积的最大值为,而△ACE的面积的最大值为,所以 ,解得;
(3)令,即,解得,,得到D(4,5a),因为抛物线的对称轴为,设P(1,m),然后分两种情况讨论:①若AD是矩形的一条边,②若AD是矩形的一条对角线.
试题解析:(1)∵=,令y=0,得到,,∴A(-1,0),B(3,0),∵直线l经过点A,∴,,∴,令,即,∵CD=4AC,∴点D的横坐标为4,∴,∴,∴直线l的函数表达式为;
(2)过点E作EF∥y轴,交直线l于点F,设E(,),则F(,),
EF==,
S△ACE=S△AFE-S△CFE=
==,
∴△ACE的面积的最大值为,∵△ACE的面积的最大值为,∴ ,解得;
(3)令,即,解得,,∴D(4,5a),∵,∴抛物线的对称轴为,设P(1,m),
①若AD是矩形的一条边,则Q(-4,21a),m=21a+5a=26a,则P(1,26a),∵四边形ADPQ为矩形,∴∠ADP=90°,∴,∴,即 ,∵,∴,∴P1(1,);
②若AD是矩形的一条对角线,则线段AD的中点坐标为( ,),Q(2,),m=,则P(1,8a),∵四边形APDQ为矩形,∴∠APD=90°,∴,∴,即 ,∵,∴,∴P2(1,-4).
综上所述,以点A、D、P、Q为顶点的四边形能成为矩形,点P的坐标为(1,)或(1,-4).