ÌâÄ¿ÄÚÈÝ
£¨±¾ÌâÂú·Ö12·Ö£¬Ã¿Ð¡ÌâÂú·Ö¸÷4·Ö£©ÒÑÖªÆ½ÃæÖ±½Ç×ø±êϵxOy£¨Èçͼ1£©£¬Ò»´Îº¯Êý£¨1£©ÇóÏß¶ÎAMµÄ³¤£»
£¨2£©ÇóÕâ¸ö¶þ´Îº¯ÊýµÄ½âÎöʽ£»
£¨3£©Èç¹ûµãBÔÚyÖáÉÏ£¬ÇÒλÓÚµãAÏ·½£¬µãCÔÚÉÏÊö¶þ´Îº¯ÊýµÄͼÏñÉÏ£¬µãDÔÚÒ»´Îº¯Êý
(±¾ÌâÂú·Ö12·Ö£¬Ã¿Ð¡ÌâÂú·Ö¸÷4·Ö)
[½â] (1) ¸ù¾ÝÁ½µãÖ®¼ä¾àÀ빫ʽ£¬ÉèM(a,
a)£¬ÓÉ| MO |=| MA |, ½âµÃ£ºa=1£¬ÔòM(1,
),
¼´AM=
¡£
(2) ¡ßA(0, 3)£¬¡àc=3£¬½«µãM´úÈëy=x2+bx+3£¬½âµÃ£ºb= -
£¬¼´£ºy=x2-
x+3¡£
(3) C(2, 2) (¸ù¾ÝÒÔAC¡¢BDΪ¶Ô½ÇÏßµÄÁâÐÎ)¡£×¢Ò⣺A¡¢B¡¢C¡¢DÊǰ´Ë³ÐòµÄ¡£
[½â] ÉèB(0, m) (m<3)£¬C(n, n2-
n+3)£¬D(n,
n+3)£¬
| AB |=3-m£¬| DC |=yD-yC=
n+3-(n2-
n+3)=
n-n2£¬
| AD |=
=
n£¬
| AB |="|" DC |Þ3-m=
n-n2¡j£¬| AB |="|" AD |Þ3-m=
n¡k¡£
½âj£¬k£¬µÃn1=0(ÉáÈ¥)£¬»òÕßn2=2£¬½«n=2´úÈëC(n, n2-
n+3)£¬µÃC(2, 2)¡£½âÎö:
ÂÔ
[½â] (1) ¸ù¾ÝÁ½µãÖ®¼ä¾àÀ빫ʽ£¬ÉèM(a,
¼´AM=
(2) ¡ßA(0, 3)£¬¡àc=3£¬½«µãM´úÈëy=x2+bx+3£¬½âµÃ£ºb= -
(3) C(2, 2) (¸ù¾ÝÒÔAC¡¢BDΪ¶Ô½ÇÏßµÄÁâÐÎ)¡£×¢Ò⣺A¡¢B¡¢C¡¢DÊǰ´Ë³ÐòµÄ¡£
[½â] ÉèB(0, m) (m<3)£¬C(n, n2-
| AB |=3-m£¬| DC |=yD-yC=
| AD |=
| AB |="|" DC |Þ3-m=
½âj£¬k£¬µÃn1=0(ÉáÈ¥)£¬»òÕßn2=2£¬½«n=2´úÈëC(n, n2-
ÂÔ
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿