ÌâÄ¿ÄÚÈÝ
£¨±¾ÌâÂú·Ö12·Ö£¬Ã¿Ð¡ÌâÂú·Ö¸÷4·Ö£©ÒÑ֪ƽÃæÖ±½Ç×ø±êϵxOy£¨Èçͼ1£©£¬Ò»´Îº¯ÊýµÄͼ ÏñÓëyÖá½»ÓÚµãA£¬µãMÔÚÕý±ÈÀýº¯ÊýµÄͼÏñÉÏ£¬ÇÒMO£½MA£®¶þ´Îº¯Êýy£½x2£«bx£«cµÄͼÏñ¾¹ýµãA¡¢M£®
£¨1£©ÇóÏ߶ÎAMµÄ³¤£»
£¨2£©ÇóÕâ¸ö¶þ´Îº¯ÊýµÄ½âÎöʽ£»
£¨3£©Èç¹ûµãBÔÚyÖáÉÏ£¬ÇÒλÓÚµãAÏ·½£¬µãCÔÚÉÏÊö¶þ´Îº¯ÊýµÄͼÏñÉÏ£¬µãDÔÚÒ»´Îº¯ÊýµÄͼÏñÉÏ£¬ÇÒËıßÐÎABCDÊÇÁâÐΣ¬ÇóµãCµÄ×ø±ê£®
(±¾ÌâÂú·Ö12·Ö£¬Ã¿Ð¡ÌâÂú·Ö¸÷4·Ö)
[½â] (1) ¸ù¾ÝÁ½µãÖ®¼ä¾àÀ빫ʽ£¬ÉèM(a, a)£¬ÓÉ| MO |=| MA |, ½âµÃ£ºa=1£¬ÔòM(1, ),
¼´AM=¡£
(2) ¡ß A(0, 3)£¬¡à c=3£¬½«µãM´úÈëy=x2+bx+3£¬½âµÃ£ºb= -£¬¼´£ºy=x2-x+3¡£
(3) C(2, 2) (¸ù¾ÝÒÔAC¡¢BDΪ¶Ô½ÇÏßµÄÁâÐÎ)¡£×¢Ò⣺A¡¢B¡¢C¡¢DÊÇ°´Ë³ÐòµÄ¡£
[½â] ÉèB(0, m) (m<3)£¬C(n, n2-n+3)£¬D(n, n+3)£¬
| AB |=3-m£¬| DC |=yD-yC=n+3-(n2-n+3)=n-n2£¬
| AD |==n£¬
| AB |=| DC |Þ3-m=n-n2¡j£¬| AB |=| AD |Þ3-m=n¡k¡£
½âj£¬k£¬µÃn1=0(ÉáÈ¥)£¬»òÕßn2=2£¬½«n=2´úÈëC(n, n2-n+3)£¬µÃC(2, 2)¡£
¡¾½âÎö¡¿ÂÔ