题目内容
【题目】类比等腰三角形的定义,我们定义:有一组邻边相等的凸四边形叫做“等邻边四边形”.
(1)如图 1,在四边形 ABCD 中,添加一个条件使得四边形 ABCD 是“等邻边四边形”.请写出你添加的一个条件.
(2)小红猜想:对角线互相平分的“等邻边四边形”是菱形.她的猜想正确吗?请说明理由.
(3)如图 2,小红作了一个Rt△ABC,其中∠ABC=90°,AB=2,BC=1,并将 Rt△ABC 沿∠ABC 的平分线 BB′方向平移得到△A′B′C′,连结 AA′, BC′.小红要使得平移后的四边形 ABC′A′是“等邻边四边形”,应平移多少距离(即线段 B′B 的长)?
【答案】(1)AB=BC 或 BC=CD 或 CD=AD 或 AD=AB;(2)解:小红的结论正确,理由详见解析;(3)平移 2 或 或 或.
【解析】
(1)由“等邻边四边形”的定义易得出结论;
(2)①先利用平行四边形的判定定理得平行四边形,再利用“等邻边四边形”定义得邻边相等,得出结论;
②由平移的性质易得BB′=AA′,A′B′∥AB,A′B′=AB=2,B′C′=BC=1,A′C′=AC=5,再利用“等邻边四边形”定义分类讨论,由勾股定理得出结论;
(3)由旋转的性质可得△ABF≌△ADC,由全等性质得∠ABF=∠ADC,∠BAF=∠DAC,AF=AC,FB=CD,利用相似三角形判定得△ACF∽△ABD,由相似的性质和四边形内角和得∠CBF=90°,利用勾股定理,等量代换得出结论.
(1)解:AB=BC 或 BC=CD 或 CD=AD 或 AD=AB
(2)解:小红的结论正确.
理由如下:∵四边形的对角线互相平分,
∴这个四边形是平行四边形,
∵四边形是“等邻边四边形”,
∴这个四边形有一组邻边相等,
∴这个“等邻边四边形”是菱形,
(3)解:由∠ABC=90°,AB=2,BC=1,得:AC= ,
∵将 Rt△ABC 平移得到 Rt△A′B′C′,
∴BA′=AA′,A′B′∥AB,A′B′=AB=2,B′C′=BC=1,A′C′=AC=,
①如图 1,当 AA′=AB 时,BB′=AA′=AB=2,
②如图 2,当 AA′=A′C′时,BB′=AA′=AC′=,
③当 AC′=BC′=时,如图 3,延长 C′B′交 AB 于点 D,则 C′B′⊥AB
∵BB′平分∠ABC,
∴∠ABB′= ∠ABC=45°
∴∠BB′D=∠ABB′=45°,
∴B′D=BD,
设 B′D=BD=x,则 C′D=x+1,BB′=x
∵根据在 Rt△BC′D 中,BC′2=C′D2+BD2 即 x2+(x+1)2=5
解得:x=1 或 x=﹣2(不合题意,舍去)
∴BB′=
④当BC′=AB=2 时,如图4,与(III)方法同理可得:(舍去)
∴ .
故应平移 2 或或或.