题目内容

从2开始,连续的偶数相加,它们和的情况如下表:
加数的个数n连 续 偶 数 的 和 S
12=1×2
22+4=6=2×3
32+4+6=12=3×4
42+4+6+8=20=4×5
52+4+6+8+10=30=5×6
(1)若n=8时,则S的值为______;
(2)根据表中的规律猜想:用n的代数式表示S的公式为:S=2+4+6+8+…+2n=______;
(3)根据上题的规律计算:102+104+106+…+2006的值.(要求写出过程)

解:根据分析:(1)第n个式子的和是n(n+1).则当n=8时,S=8×9=72;

(2)根据特殊的式子即可发现规律,S=S=2+4+6+8+…+2n=2(1+2+3+…+n)=n(n+1);

(3)原式=(2+4+6+…+2006)-(2+4+6+…+100)=1003×1004-50×51=1007012-2550=1004462.
分析:(1)根据表中的规律发现:第n个式子的和是n(n+1).则当n=8时,S=8×9=72;
(2)根据特殊的式子即可发现规律;
(3)结合上述规律,只需加上2+4+…+2006再减去2+4+…+100即可计算.
点评:此题注意根据所给的具体式子观察结果和数据的个数之间的关系.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网