题目内容

D、E分别是△ABC的边AB、AC的中点.O是平面上的一动点,连接OB、OC,G、F分别是OB、OC的中点,顺次连接点D、E、F、G.
(1)如图1,当点O在△ABC内时,求证:四边形DEFG是平行四边形;
(2)若点O在△ABC外,其余条件不变,点O的位置应满足什么条件,能使四边形DEFG是菱形?请在画2中补全图形,并说明理由.
(1)证明见解析;(2)OA=BC.

试题分析:(1)根据平行四边形的判定性质求证.
(2)把结论当做已知条件,由结论推出已知.
试题解析:(1)∵AB、OB、OC、AC中点分别为D、E、F、G
∴DG、EF分别为△ABC和△OBC的中位线
∴DG∥BC  EF∥BC DG=BC  EF=BC
∴DG∥EF且DG=EF
∴四边形DEFG是平行四边形;
(2)当点O满足OA=BC,四边形DEFG是菱形.
由三角形中位线性质得DE=EF,
所以平行四边形DEFG是菱形.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网