题目内容
【题目】李老师为了解某校学生完成数学课前预习的具体情况,对部分学生进行了跟踪调查,并将调查结果分为四类,A:很好;B:较好;C:一般;D:较差.绘制成如下统计图.
(1)李老师一共调查了多少名同学?并将下面条形统计图补充完整.
(2)若该校有1000名学生,则数学课前预习“很好”和“较好”总共约多少人?
(3)为了共同进步,李老师想从被调查的A类和D类学生中各随机选取一位同学进行“一帮一”互助学习,求出所选两位同学恰好是一位男同学和一位女同学的概率.(要求列表或树状图)
【答案】(1)20,图详见解析;(2)650;(3)
【解析】
(1)利用A类学生总数除以A类学生所占百分比可得调查学生总数,用调查的学生总数乘以C类所占的百分比,再减去C类的男生数,从而求出C类的女生数;用调查的学生总数减去A、B、C类的学生数和D类的女生数,从而求出D类的男生数,即可补全统计图;
(2)利用样本估计总体思想求解可得.
(3)根据题意先画出树状图,再根据概率公式即可得出答案.
(1)抽查的总人数为3÷15%=20,C类中女生有:20×25%﹣2=3(名),
D类中男生有20﹣3﹣10﹣5﹣1=1(人),
条形统计图补充完整如图所示:
(2)1000×65%=650人,
答:数学课前预习“很好”和“较好”总共约650人;
(3)根据题意画图如下:
,
由树状图可得共有6种可能的结果,其中恰好一名男同学和一名女同学的结果有3中,
所以恰好是一名男同学和一名女同学的概率是.
【题目】如图,AB是圆O的直径,点C是圆O上一点,∠CAB=30°,D是直径AB上一动点,连接CD并过点D作CD的垂线,与圆O的其中一个交点记为点E(点E位于直线CD上方或左侧),连接EC.已知AB=6cm,设A、D两点间的距离为xcm,C、D两点间的距离为y1cm,E、C两点间的距离为y2cm,小雪根据学习函数的经验,分别对函数y1,y2随自变量x的变化而变化的规律进行了探究.下面是小雪的探究过程:
x/cm | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
y1/cm | 5.2 | 4.4 | 3.6 | 3.0 | 2.7 | 2.7 |
|
y2/cm | 5.2 | 4.6 | 4.2 |
| 4.8 | 5.6 | 6.0 |
(1)按照下表中自变量x的值进行取点、面图、测量,分别得到了y1,y2与x的几组对应值,请将表格补充完整:(保留一位小数)
(2)在同一平面直角坐标系xOy中,y2的图象如图所示,描出补全后的表中各组数值所对应的点(x,y1),(x,y2),并画出函数y1的图象;
(3)结合函数图象,解决问题:当∠ECD=60°时,AD的长度约为 cm.