题目内容
【题目】已知在平面直角坐标系中有两点A(0,1),B(﹣1,0),动点P在反比例函数y=的图象上运动,当线段PA与线段PB之差的绝对值最大时,点P的坐标为_____.
【答案】(﹣1,﹣2)或(2,1)
【解析】由三角形三边关系知|PA﹣PB|≥AB知直线AB与双曲线y=的交点即为所求点P,据此先求出直线AB解析式,继而联立反比例函数解析式求得点P的坐标.
如图,
设直线AB的解析式为y=kx+b,
将A(1,0)、B(0,﹣1)代入,得:,
解得:,
∴直线AB的解析式为y=x﹣1,
直线AB与双曲线y=的交点即为所求点P,此时|PA﹣PB|=AB,即线段PA与线段PB之差的绝对值取得最大值,
由可得或,
∴点P的坐标为(﹣1,﹣2)或(2,1),
练习册系列答案
相关题目