题目内容
【题目】如图,在平面直角坐标系中,抛物线y=ax2+bx+2(a≠0)与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,抛物线经过点D(﹣2,﹣3)和点E(3,2),点P是第一象限抛物线上的一个动点.
(1)求直线DE和抛物线的表达式;
(2)在y轴上取点F(0,1),连接PF,PB,当四边形OBPF的面积是7时,求点P的坐标;
(3)在(2)的条件下,当点P在抛物线对称轴的右侧时,直线DE上存在两点M,N(点M在点N的上方),且MN=2,动点Q从点P出发,沿P→M→N→A的路线运动到终点A,当点Q的运动路程最短时,请直接写出此时点N的坐标.
【答案】(1)y=x﹣1,y=x2+x+2;(2)P(2,3)或(,);(3)N(,).
【解析】
(1)将点D、E的坐标代入函数表达式,即可求解;
(2)S四边形OBPF=S△OBF+S△PFB=×4×1+×PH×BO,即可求解;
(3)过点M作A′M∥AN,过作点A′直线DE的对称点A″,连接PA″交直线DE于点M,此时,点Q运动的路径最短,即可求解.
(1)将点D、E的坐标代入函数表达式得:,解得:
,故抛物线的表达式为:y=x2+x+2,
同理可得直线DE的表达式为:y=x﹣1…①;
(2)如图1,连接BF,过点P作PH∥y轴交BF于点H,
将点FB代入一次函数表达式,
同理可得直线BF的表达式为:y=+1,
设点P(x,),则点H(x,+1),
S四边形OBPF=S△OBF+S△PFB=×4×1+×PH×BO=2+2()=7,
解得:x=2或,
故点P(2,3)或(,);
(3)当点P在抛物线对称轴的右侧时,点P(2,3),
过点M作A′M∥AN,过作点A′直线DE的对称点A″,连接PA″交直线DE于点M,此时,点Q运动的路径最短,
∵MN=2,相当于向上、向右分别平移2个单位,故点A′(1,2),
A′A″⊥DE,则直线A′A″过点A′,则其表达式为:y=﹣x+3…②,
联立①②得x=2,则A′A″中点坐标为(2,1),
由中点坐标公式得:点A″(3,0),
同理可得:直线AP″的表达式为:y=﹣3x+9…③,
联立①③并解得:x=,即点M(,),
点M沿BD向下平移2个单位得:N(,).