题目内容
【题目】如图,在平面直角坐标系中,抛物线与x轴交于点A(,0)、B(4,0)两点,与y轴交于点C。
(1)求抛物线的解析式;
(2)点P从A点出发,在线段AB上以每秒3个单位长度的速度向B点运动,同时点Q从B点出发,在线段BC上以每秒1个单位长度向C点运动。其中一个点到达终点时,另一个点也停止运动。当△PBQ存在时,求运动多少秒使△PBQ的面积最大,最多面积是多少?
(3)当△PBQ的面积最大时,在BC下方的抛物线上存在点K,使S△CBK∶S△PBO=5∶2,求K点坐标。
【答案】(1)、y=;(2)、t=1时,最大面积为;(3)、K1(1,﹣),K2(3,﹣).
【解析】试题分析:(1)把点A、B的坐标分别代入抛物线解析式,列出关于系数a、b的解析式,通过解方程组求得它们的值;
(2)设运动时间为t秒.利用三角形的面积公式列出S△PBQ与t的函数关系式S△PBQ=-(t-1)2+.利用二次函数的图象性质进行解答;
(3)利用待定系数法求得直线BC的解析式为y=x-3.由二次函数图象上点的坐标特征可设点K的坐标为(m, m2-m-3).
如图2,过点K作KE∥y轴,交BC于点E.结合已知条件和(2)中的结果求得S△CBK=.则根据图形得到:S△CBK=S△CEK+S△BEK=EKm+EK(4-m),把相关线段的长度代入推知:-m2+3m=.易求得K1(1,-),K2(3,-).
试题解析:(1)把点A(-2,0)、B(4,0)分别代入y=ax2+bx-3(a≠0),得
,
解得,
所以该抛物线的解析式为:y=x2-x-3;
(2)设运动时间为t秒,则AP=3t,BQ=t.
∴PB=6-3t.
由题意得,点C的坐标为(span>0,-3).
在Rt△BOC中,BC==5.
如图1,过点Q作QH⊥AB于点H.
∴QH∥CO,
∴△BHQ∽△BOC,
∴,即,
∴HQ=t.
∴S△PBQ=PBHQ=(6-3t)t=-t2+t=-(t-1)2+.
当△PBQ存在时,0<t<2
∴当t=1时,
S△PBQ最大=.
答:运动1秒使△PBQ的面积最大,最大面积是;
(3)设直线BC的解析式为y=kx+c(k≠0).
把B(4,0),C(0,-3)代入,得
,
解得,
∴直线BC的解析式为y=x-3.
∵点K在抛物线上.
∴设点K的坐标为(m, m2-m-3).
如图2,过点K作KE∥y轴,交BC于点E.则点E的坐标为(m, m-3).
∴EK=m-3-(m2-m-3)=-m2+m.
当△PBQ的面积最大时,∵S△CBK:S△PBQ=5:2,S△PBQ=.
∴S△CBK=.
S△CBK=S△CEK+S△BEK=EKm+EK(4-m)
=×4EK
=2(-m2+m)
=-m2+3m.
即:-m2+3m=.
解得 m1=1,m2=3.
∴K1(1,-),K2(3,-).