题目内容
【题目】(阅读材料)
我们知道“在数轴上表示的两个数,右边的数总比左边的数大”,利用此规律,我们可以求数轴上两个点之间的距离,具体方法是:用右边的数减去左边的数的差就是表示这两个数的两点之间的距离.若点表示的数是,点表示的数是,点在点的右边(即),则点,之间的距离为(即).
例如:若点表示的数是-6,点表示的数是-9,则线段.
(理解应用)
(1)已知在数轴上,点表示的数是-2020,点表示的数是2020,求线段的长;
(拓展应用)
如图,数轴上有三个点,点表示的数是-2,点表示的数是3,点表示的数是.
(2)当,,三个点中,其中一个点是另外两个点所连线段的中点时,求的值;
(3)在点左侧是否存在一点,使点到点,点的距离和为19?若存在,求出点表示的数:若不存在,请说明理由.
【答案】(1)4040;(2)0.5,7或8;(3)-9.
【解析】
(1)根据题意,用点表示的数减去点表示的数加以计算即可;
(2)根据题意分①点是线段的中点、②点是线段的中点、③点是线段的中点三种情况进一步分析讨论即可;
(3)设点表示的数是,然后分别表示出AQ与BQ,根据“点到点,点的距离和为19”进一步求解即可.
(1);
(2)①当点是线段的中点时,则.
所以.解得:;
②当点是线段的中点时,则.
所以.解得:;
③当点是线段的中点时,则.
所以.解得:;
综上所述,的值为0.5、或8;
(3)设点表示的数是,则:QA=,QB=,
∵,
∴.
解得:.
∴在点左侧存在一点,使点到点,的距离和为19.且点表示的数是-9.
【题目】某商场购进了一批、两种型号的智能扫地机器人,这两种智能扫地机器人的进购数量、进价、售价如表所示:
类型 | 进购数量(个) | 进价(元/个) | 售价(元/个) |
型 | 20 | 1800 | 2300 |
型 | 40 | 1500 | ? |
若该商场计划全部销售完这批智能扫地机器人的总利润不少于32000元,则型智能扫地机器人的销售单价至少是多少元?