题目内容
【题目】如图,在矩形ABCD内放入六个小正方形后形成一个中心对称图形,其中顶点E、F分别在边BC、AD上,则长AD与宽AB的比值为( )
A.6:5
B.13:10
C.8:7
D.4:3
【答案】A
【解析】解:连结EF,作IJ⊥LJ于J,
∵在矩形ABCD内放入六个小正方形后形成一个中心对称图形,
∴△HGF∽△FHE,△HGF≌△FML≌△LJI,
∴HG:GF=FH:HE=1:2,
∴长AD与宽AB的比为(1+2+1+2):(2+2+1)=6:5.
故选:A.
【考点精析】本题主要考查了矩形的性质和中心对称及中心对称图形的相关知识点,需要掌握矩形的四个角都是直角,矩形的对角线相等;如果把一个图形绕着某一点旋转180度后能与另一个图形重合,那么我们就说,这两个图形成中心对称;如果把一个图形绕着某一点旋转180度后能与自身重合,那么我们就说,这个图形成中心对称图形才能正确解答此题.
练习册系列答案
相关题目