题目内容
【题目】某工厂接受了 20 天内生产1200 台GH 型电子产品的总任务。已知每台GH 型产品由 4 个G 型装 置和3 个 H 型装置配套组成。工厂现有80 名工人,每个工人每天能加工6 个G 型装置或3 个 H 型装置。工厂将所有工人分成两组同时开始加工,每组分别加工一种装置,并要求每天加工的G 、H 型装置数量正好组成GH 型产品.
(1)按照这样的生产方式,工厂每天能配套组成多少套GH 型电子产品?
(2)工厂补充 40名新工人,这些新工人只能独立进行G 型装置的加工,且每人每天只能加工 4个G型装置,则补充新工人后每天能配套生产多少产品?补充新工人后20天内能完成总任务吗?
【答案】(1)48;(2)72,能.
【解析】
(1)设安排x名工人生产G型装置,则安排(80﹣x)名工人生产H型装置,根据“生产的装置总数=每人每天生产的数量×人数”结合每台GH型产品由4个G型装置和3个H型装置配套组成,即可得出关于x的一元一次方程,解之可得出x的值,再将其代入中即可求出结论;
(2)设安排y名工人生产H型装置,则安排(80﹣y)名工人及40名新工人生产G型装置,同(1)可得出关于y的一元一次方程,解之可得出y的值,再将其代入中即可求出补充新工人后每天能配套生产的套数,进而求出20天生产的总数,与1200比较即可得出结论.
(1)设安排x名工人生产G型装置,则安排(80﹣x)名工人生产H型装置,
根据题意得:,
解得:x=32,∴48.
答:按照这样的生产方式,工厂每天能配套组成48套GH型电子产品.
(2)设安排y名工人生产H型装置,则安排(80﹣y)名工人及40名新工人生产G型装置,
根据题意得:,
解得:y=72,∴y=72.
∵72×20=1440>1200,∴补充新工人后20天内能完成总任务.
答:补充新工人后每天能配套生产72套产品,补充新工人后20天内能完成总任务.
【题目】某校准备在国庆节期间组织学生到泰山进行研学旅行,已知老师与学生一共25人参加此次研学旅行,购买门票共花费1700元,门票费用如表格所示,求参加研学旅行的老师和学生各有多少人?设老师有x人,学生有y人,则可列方程组为( )
景点 | 票价 | 开放时间 |
泰山门票 | 旺季:125元/人 淡季:100元/人 | 全天 |
说明:(1)旺季时间(2月~11月),淡季时间(12月-次年1月); (2)老年人(60岁~70岁)、学生、儿童(1.2米~1.4米)享受5折优惠; (3)教师、省部级劳模、英模、道德模范享受8折优惠; (4)现役军人、伤残军人、70岁以上老年人、残疾人,凭本人有效证件免费进山; (5)享受优惠的游客请出示本人有效证件。 |
A. B. C. D.