题目内容
阅读理解:对于任意正实数a、b,∵(-)2≥0,∴a-2+b≥0,∴a+b≥2,只有当a=b时,等号成立.
结论:在a+b≥2(a、b均为正实数)中,若ab为定值p,则a+b≥2,只有当a=b时,a+b有最小值2. 根据上述内容,回答下列问题:
(1)若m>0,只有当m= 时,m+有最小值 ;
若m>0,只有当m= 时,2m+有最小值 .
(2)如图,已知直线L1:y=x+1与x轴交于点A,过点A的另一直线L2与双曲线y=
(x>0)相交于点B(2,m),求直线L2的解析式.
(3)在(2)的条件下,若点C为双曲线上任意一点,作CD∥y轴交直线L1于点D,试
求当线段CD最短时,点A、B、C、D围成的四边形面积.
【答案】
(1)当时,有最小值为2;当时,有最小值为8
(2) (3)23
【解析】解:(1)∵m>0,只有当时,有最小值;
m>0,只有当时,有最小值.
∴m>0,只有当时,有最小值为2;
m>0,只有当时,有最小值为8
(2)对于,令y=0,得:x=-2,
∴A(-2,0)
又点B(2,m)在上,
∴
设直线的解析式为:,
则有,
解得:
∴直线的解析式为:;
(3)设,则:,
∴CD=,
∴CD最短为5,
此时,n=4,C(4,-2),D(4,3)
过点B作BE∥y轴交AD于点E,则B(2,-4),E(2,2),BE=6,
∴S四边形ABCD=S△ABE+S四边形BEDC
练习册系列答案
相关题目