题目内容
【题目】如图,二次函数 的图象经过A(2,0),B(0,-6)两点.
(1)求这个二次函数的解析式及顶点坐标;
(2)设该二次函数的对称轴与x轴交于点C,连接BA,BC,求△ABC的面积.
(3)在抛物线的对称轴上是否存在一点P.使得以O、B、C、P四点为顶点的四边形是平行四边形?若存在,请直接写出P点坐标;若不存在,请说明理由.
【答案】
(1)解:将A(2,0)、B(0,﹣6)两点代入则:
,解得: ,∴解析式为y= x2+4x﹣6,∵y= x2+4x﹣6= ,∴顶点坐标为:(4,2)
(2)解:令 x2+4x﹣6=0,∴x2﹣8x+12=0,∴解得:x1=2,x2=6,∴另一个交点C(6,0),
∴AC=2,∴S△ABC= ×2×6=6
(3)解:存在.分两种情况讨论:
①显然过B作BP∥OC交对称轴于点P,则四边形OBPC是矩形,此时P(2,-6);
②过O作OP∥BC交对称轴于点P,∵OB∥PC,∴四边形OBCP是平行四边形,∴CP=OB=6,∴P(2,6).
综上所述:P(2,6)或P(2,-6).
【解析】把A点和B点坐标代入二次函数中中得到关于b、c的方程组,然后解方程组求出b、c即可得到抛物线解析式;
先把第一小题中的解析式配成顶点式,从而得到C点坐标,然后根据三角形面积公式计算即可;
利用PC∥OB,则根据平行四边形的判定方法,当PC=OB=6时,以O、B、C、P四点为顶点的四边形是平行四边形,从而可确定P点坐标.
【题目】二次函数y=ax2+bx+c (a、b、c为常数且a≠0)中的x与y的部分对应值如下表,
x | … | -3 | -2 | -1 | 0 | 1 | 2 | 3 | 4 | 5 | … |
y | … | 12 | 5 | 0 | -3 | -4 | -3 | 0 | 5 | 12 | … |
下列四个结论:
①二次函数y=ax2+bx+c 有最小值,最小值为-3;
②抛物线与y轴交点为(0,-3);
③二次函数y=ax2+bx+c 的图像对称轴是x=1;
④本题条件下,一元二次方程ax2+bx+c的解是x1=-1,x2=3.
其中正确结论的个数是( )
A.4
B.3
C.2
D.1
【题目】为了加强学生课外阅读,开阔视野,某校开展了“书香校园,从我做起”的主题活动.学校随机抽取了部分学生,对他们一周的课外阅读时间进行调查,绘制出频数分布表和频数分布直方图的一部分如下:
课外阅读时间(单位:小时) | 频数(人数) | 频率 |
0﹤t≤2 | 2 | 0.04 |
2﹤t≤4 | 3 | 0.06 |
4﹤t≤6 | 15 | 0.30 |
6﹤t≤8 | a | 0.50 |
t﹥8 | 5 | b |
请根据图表信息回答下列问题:
(1)频数分布表中的a=b=;
(2)将频数分布直方图补充完整;
(3)学校将每周课外阅读时间在8小时以上的学生评为“阅读之星”,请你估计该校2000名学生中评为“阅读之星”的有多少人?