题目内容

【题目】如图,在Rt△ABC中,∠BAC=90°,∠B=60°,△AB′C′可以由△ABC绕点A顺时针旋转90°得到(点B′与点B是对应点,点C′与点C是对应点),连接CC′,则∠CC′B′的度数是

【答案】15°
【解析】解:∵∠BAC=90°,∠B=60°,
∴∠ACB=90°﹣60°=30°,
∵△AB′C由△ABC绕点A顺时针旋转90°得到,
∴AC′=AC,∠C′AB′=∠CAB=90°,∠AC′B′=30°,
∴△ACC′为等腰直角三角形,
∴∠AC′C=45°,
∴∠CC′B′=∠AC′C﹣∠AC′B′=45°﹣30°=15°.
所以答案是15°.
【考点精析】关于本题考查的旋转的性质,需要了解①旋转后对应的线段长短不变,旋转角度大小不变;②旋转后对应的点到旋转到旋转中心的距离不变;③旋转后物体或图形不变,只是位置变了才能得出正确答案.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网