题目内容
【题目】四边形是边长为4的正方形,点在边所在的直线上,连接,以为边,作正方形(点,点在直线的同侧),连接
(1)如图1,当点与点重合时,请直接写出的长;
(2)如图2,当点在线段上时,
①求点到的距离
②求的长
(3)若,请直接写出此时的长.
【答案】(1)BF=4;(2)①点到的距离为3;②BF=;(3)AE=2+或AE=1.
【解析】
试题分析:(1)过点F作FMBA, 交BA的延长线于点M,根据勾股定理求得AC=,又因点与点重合,可得△AFM为等腰直角三角形且AF=,再由勾股定理求得AM=FM=4,在Rt△BFM中,由勾股定理即可求得BF=4;(2)①过点F作FHAD交AD的延长线于点H,根据已知条件易证,根据全等三角形的性质可得FH=ED,又因AD=4,AE=1,所以ED=AD-AE=4-1=3,即可求得FH=3,即点到的距离为3;②延长FH交BC的延长线于点K,求得FK和BK的长,在Rt△BFK中,根据勾股定理即可求得BF的长;(3)分点E在线段AD的延长线上和点E在线段DA的延长线上两种情况求解即可.
试题解析:
(1)BF=4;
(2) 如图,
①过点F作FHAD交AD的延长线于点H,
∵四边形CEFG是正方形
∴EC=EF,∠FEC=90°
∴∠DEC+∠FEH=90°,
又因四边形是正方形
∴∠ADC=90°
∴∠DEC+∠ECD=90°,
∴∠ECD=∠FEH
又∵∠EDC=∠FHE=90°,
∴
∴FH=ED
∵AD=4,AE=1,
∴ED=AD-AE=4-1=3,
∴FH=3,
即点到的距离为3.
②延长FH交BC的延长线于点K,
∴∠DHK=∠HDC=∠DCK =90°,
∴四边形CDHK为矩形,
∴HK=CD=4,
∴FK=FH+HK=3+4=7
∵
∴EH=CD=AD=4
∴AE=DH=CK=1
∴BK=BC+CK=4+1=5,
在Rt△BFK中,BF=
(3)AE=2+或AE=1.
【题目】如图,在中,,,点分别在上(点与点不重合),且.将绕点逆时针旋转得到.当的斜边、直角边与分别相交于点(点与点不重合)时,设.
(1)求证:;
(2)求关于的函数解析式,并直接写出自变量的取值范围.
【题目】绿豆在相同条件下的发芽试验,结果如下表所示:
每批 粒数n | 100 | 300 | 400 | 600 | 1000 | 2000 | 3000 |
发芽的 粒数m | 96 | 282 | 382 | 570 | 948 | 1912 | 2850 |
发芽的 频率 | 0.960 | 0.940 | 0.955 | 0.950 | 0.948 | 0.956 | 0.950 |
则绿豆发芽的概率估计值是( )
A.0.960B.0.950C.0.940D.0.900