题目内容
【题目】如图,点B在线段AC上,点E在线段BD上,∠ABD=∠DBC=90°,AB=DB,EB=CB,M,N分别是AE,CD的中点.
(1)求证:△ABM≌△DBN;
(2)试探索BM和BN的关系,并证明你的结论.
【答案】(1)见解析;(2)△MBN是等腰直角三角形,理由见解析
【解析】
(1)根据SAS即可证明结论;(2)通过证明△ABM≌△DBN可证明BM=BN,∠ABM=∠DBN.根据∠ABD=∠DBC,∠ABD+∠DBC=180°可得∠DBN+∠DBM=∠MBN=90°,即可得答案.
(1)解:在△ABE和△DBC中 ,
∴△ABE≌△DBC
(2)解:△MBN是等腰直角三角形,证明如下:
∵△ABE≌△DBC,
∴AE=CD,∠BAM=∠BDN.
∵M,N分别是AE,CD的中点,
∴AM=AE,CN=CD.
∴AM=CN.
在△ABM和△DBN中 ,
∴ABM≌△DBN.
∴BM=BN,∠ABM=∠DBN.
∵∠ABD=∠DBC,∠ABD+∠DBC=180°,
∴∠ABD=∠ABM+∠DBM=90°.
∴∠DBN+∠DBM=∠MBN=90°.
∴△MBN是等腰直角三角形.
练习册系列答案
相关题目