题目内容
【题目】如图,△ABC.
(1)尺规作图:过点C作AB的垂线交AB于点O.不写作法,保留作图痕迹;
(2)分别以直线AB,OC为x轴,y轴建立平面直角坐标系,使点B,C 均在正半轴上.若AB=7.5,OC=4.5,∠A=45°,写出点B关于y轴的对称点D的坐标;
(3)在(2)的条件下,求△ACD的面积.
【答案】(1)见解析;(2)D(-3,0);(3).
【解析】
(1)根据题意画出图形即可;
(2)先根据题意建立平面直角坐标系,得出A,B,C的坐标,从而可写出点B关于y轴的对称点D的坐标;
(3)根据三角形面积计算公式可得出△ACD的面积.
(1)如图所示,
(2)建立平面直角坐标系,如图所示,
∵∠AOC=90°,∠A=45°,
∴∠ACO=45°
∴AO=CO,
∵OC=4.5,
∴AO=4.5,
∵AB=7.5,
∴OB=AB-AO=7.5-4.5=3,
∴B(3,0),
∵点B与点D关于y轴对称,
∴D(-3,0);
(3)连接CD,如图所示,
∵AO=4.5,DO=3,
∴AD=,
∴.
【题目】某企业为杭州计算机产业基地提供电脑配件.受美元走低的影响,从去年1至9月,该配件的原材料价格一路攀升,每件配件的原材料价格y1(元)与月份x(1≤x≤9,且x取整数)之间的函数关系如下表:
月份x | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
价格y1(元/件) | 560 | 580 | 600 | 620 | 640 | 660 | 680 | 700 | 720 |
随着国家调控措施的出台,原材料价格的涨势趋缓,10至12月每件配件的原材料价格y2(元)与月份x(10≤x≤12,且x取整数)之间存在如图所示的变化趋势:
(1)请观察题中的表格,用所学过的一次函数、反比例函数或二次函数的有关知识,直接写出y1 与x之间的函数关系式,根据如图所示的变化趋势,直接写出y2与x之间满足的一次函数关系式;
(2)若去年该配件每件的售价为1000元,生产每件配件的人力成本为50元,其它成本30元,该配件在1至9月的销售量p1(万件)与月份x满足关系式p1=0.1x+1.1(1≤x≤9,且x取整数),10至12月的销售量p2(万件)p2=﹣0.1x+2.9(10≤x≤12,且x取整数).求去年哪个月销售该配件的利润最大,并求出这个最大利润.