题目内容
(2013年四川绵阳12分)为了从甲、乙两名选手中选拔一个参加射击比赛,现对他们进行一次测验,两个人在相同条件下各射靶10次,为了比较两人的成绩,制作了如下统计图表:
甲、乙射击成绩统计表
|
平均数 |
中位数 |
方差 |
命中10环的次数 |
甲 |
7 |
|
|
0 |
乙 |
|
|
|
1 |
甲、乙射击成绩折线图
(1)请补全上述图表(请直接在表中填空和补全折线图);
(2)如果规定成绩较稳定者胜出,你认为谁应胜出?说明你的理由;
(3)如果希望(2)中的另一名选手胜出,根据图表中的信息,应该制定怎样的评判规则?为什么?
解:(1)根据折线统计图得:
乙的射击成绩为:2,4,6,8,7,7,8,9,9,10,
则平均数为(环),中位数为7.5(环),方差为
。
甲的射击成绩为9,6,7,6,2,7,7,?,8,9,平均数为7(环),
则甲第八环成绩为70﹣(9+6+7+6+2+7+7+8+9)=9(环),
所以甲的10次成绩为:9,6,7,6,2,7,7,9,8,9,中位数为7(环),方差为
。
补全图表如下:
甲、乙射击成绩统计表
|
平均数 |
中位数 |
方差 |
命中10环的次数 |
甲 |
7 |
7 |
4 |
0 |
乙 |
7 |
7.5 |
5.4 |
1 |
甲、乙射击成绩折线图
(2)由于甲的方差小于乙的方差,甲比较稳定,故甲胜出。
(3)如果希望乙胜出,应该制定的评判规则为:平均成绩高的胜出;如果平均成绩相同,则随着比赛的进行,发挥越来越好者或命中满环(10环)次数多者胜出。因为甲乙的平均成绩相同,乙只有第5次射击比第四次射击少命中1环,且命中1次10环,而甲第2次比第1次、第4次比第3次,第5次比第4次命中环数都低,且命中10环的次数为0次,即随着比赛的进行,乙的射击成绩越来越好。
【解析】(1)根据折线统计图列举出乙的成绩,计算出甲的中位数,方差,以及乙平均数,中位数及方差,补全即可。
(2)计算出甲乙两人的方差,比较大小即可做出判断。
(3)希望甲胜出,规则改为9环与10环的总数大的胜出,因为甲9环与10环的总数为4环。
考点:统计表,折线统计图,算术平均数,中位数,方差。