题目内容

(2013年四川绵阳12分)如图,已知矩形OABC中,OA=2,AB=4,双曲线(k>0)与矩形两边AB、BC分别交于E、F.

(1)若E是AB的中点,求F点的坐标;

(2)若将△BEF沿直线EF对折,B点落在x轴上的D点,作EG⊥OC,垂足为G,证明△EGD∽△DCF,并求k的值.

 

【答案】

解:(1)∵点E是AB的中点,OA=2,AB=4,∴点E的坐标为(2,2)。

将点E的坐标代入,可得k=4。

∴反比例函数解析式为:

∵点F的横坐标为4,∴点F的纵坐标

∴点F的坐标为(4,1)。

(2)结合图形可设点E坐标为(,2),点F坐标为(4,),

则CF=,BF=DF=2﹣,ED=BE=AB﹣AE=4﹣

在Rt△CDF中,

由折叠的性质可得:BE=DE,BF=DF,∠B=∠EDF=90°,

∵∠CDF+∠EDG=90°,∠GED+∠EDG=90°,∴∠CDF=∠GED。

又∵∠EGD=∠DCF=90°,∴△EGD∽△DCF。

,即

=1,解得:k=3。

【解析】(1)根据点E是AB中点,可求出点E的坐标,将点A的坐标代入反比例函数解析式可求出k的值,再由点F的横坐标为4,可求出点F的纵坐标,继而得出答案。

(2)证明∠GED=∠CDF,然后利用两角法可判断△EGD∽△DCF,设点E坐标为(,2),点E坐标为(4,),即可得CF=,BF=DF=2﹣,在Rt△CDF中表示出CD,利用对应边成比例可求出k的值。

考点:反比例函数综合题,曲线上点的坐标与方程的关系,折叠的性质,勾股定理,相似三角形的判定和性质。

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网