题目内容
如图,在平行四边形ABCD中,E、F分别是边AD、BC的中点,AC 分别交BE、DF于点M、N,给出下列结论:①△ABM≌△CDN;②AM=AC; ③DN=2NF;④S△AMB = S△ABC,其中正确的是 (只填序号)
①②③
在?ABCD中,AD∥BC,AD=BC,
又E、F分别是边AD、BC的中点,
∴BF∥DE,BF=DE,
∴四边形BFDE是平行四边形,
∴BE∥DF,
∴∠AMB=∠ANF=∠DNC,
∵∠BAM=∠DCN,AB=CD,
∴△ABM≌△CDN;
E是AD的中点,BE∥DF,
∴M是AN的中点,
同理N是CM的中点,
∴AM="1/3" AC;
DN=BM=2NF;
S△AMB=1/2S△ABC不成立.故答案为:①②③.
又E、F分别是边AD、BC的中点,
∴BF∥DE,BF=DE,
∴四边形BFDE是平行四边形,
∴BE∥DF,
∴∠AMB=∠ANF=∠DNC,
∵∠BAM=∠DCN,AB=CD,
∴△ABM≌△CDN;
E是AD的中点,BE∥DF,
∴M是AN的中点,
同理N是CM的中点,
∴AM="1/3" AC;
DN=BM=2NF;
S△AMB=1/2S△ABC不成立.故答案为:①②③.
练习册系列答案
相关题目