题目内容
(本小题满分14分)
如图①,已知四边形ABCD是正方形,点E是AB的中点,点F在边CB的延长线上,且BE=BF,连接EF.
小题1:(1)若取AE的中点P,求证:BP=CF;
小题2:(2)在图①中,若将绕点B顺时针方向旋转(00<<3600),如图②,是否存在某位置,使得?,若存在,求出所有可能的旋转角的大小;若不存在,请说明理由;
小题3:(3)在图①中,若将△BEF绕点B顺时针旋转(00<<900),如图③,取AE的中点P,连接BP、CF,求证:BP=CF且BP⊥CF.
如图①,已知四边形ABCD是正方形,点E是AB的中点,点F在边CB的延长线上,且BE=BF,连接EF.
小题1:(1)若取AE的中点P,求证:BP=CF;
小题2:(2)在图①中,若将绕点B顺时针方向旋转(00<<3600),如图②,是否存在某位置,使得?,若存在,求出所有可能的旋转角的大小;若不存在,请说明理由;
小题3:(3)在图①中,若将△BEF绕点B顺时针旋转(00<<900),如图③,取AE的中点P,连接BP、CF,求证:BP=CF且BP⊥CF.
小题1:解:(1)∵ AE = BE,AP = EP
∴ BE = 2PE,AB = 4PE,BP = 3PE…………(1分)
∵ AB = BC,BE =" BF " ∴ BC = 4PE,BF = 2PE
∴ CF = 6PE…………(2分) ∴
小题2:(2)存在…………(4分)
因为将绕点B顺时针方向旋转一周,E、F分别在以点B为圆心,BE为半径的圆周上,如图1,因此过A点做圆B的切线,设切点是点E,此时,有AE∥BF。
当圆B的切线AE在AB的右侧时,如图1
∵ AE∥BF∴∠AEB = ∠EBF = 90° ∵ BE = AB∴∠BAE = 30°
∴∠ABE = 60°,即旋转角是60°…………(6分)
当圆B的切线AE在AB的左侧时,如图2
如图2,∵ AE∥BF
∴∠AEB + ∠EBF = 180°∴∠AEB = 90°
∵ BE = AB ∴∠BAE = 30°
∴∠ABE = 60°,即旋转角是300°
小题3:(3)延长BP到点G,使BP=PG,连结AG
∴△APG ≌△BPE
∴ AG = BE,PG = BP,∠G = ∠PBE
∵ BE = BF ∴ AG = BF
∵△BEF绕点B顺时针旋转 ∴∠ABE = ,∠CBF = 180°-
∵∠G = ∠PBE ∴∠G + ∠ABP =
∴∠GAB = 180°- ∴∠GAB = ∠CBF
又∵ AB = BC,AG = BF
∴△GAB ≌△FBC ∴ BG = CF
∵ ∴…………(11分)
延长PB,与CF相交于点H
∵△GAB ≌△FBC ∴∠ABP = ∠BCH
∵∠ABP + ∠CBH = 90° ∴∠BCH + ∠CBH =90°
∴ BH⊥CF 即 BP⊥CF…………(14分)
略
练习册系列答案
相关题目